How dCache Namespace Works

- View from database performance
 - PNFS
 - Chimera

How PNFS works

- All files and directories have unique PNFSID, which is a unique key in the table.
- All meta data associated with files and directories also have PNFSIDs (differ from PNFSID of associated files)
- The data associated with PNFSIDs are stored as "blob".
- "blob" is used like hash.
 - "blob" not only include meta information (sometimes) but also include PNFSIDs
 - "blob" needs to be decoded to link to the next PNFSIDs → CPU Expensive
 - Size of "blob" is limited.

Content of directory data blob

- Data Blob of associated with PNFID of directory contains five PNFSIDs (at least)
 - PNFSID of itself
 - PNFSID of metadata PNFSIDs
 - PNFSID of parent directory
 - Two PNFSIDs
 - The data blob of each of two PNFSIDs contains list of all PNFSIDs of files and and subdirectories within this directory if the number is relatively small (~100) If not, it contains

Dcache PNFS example

- srm://dcsrm.usatlas.bnl.gov/pnfs/usatlas.bnl.gov/BNLT1D0/data08_cos/RAW/data08_cos.00072 854.physics_HLT_Cosmics_MU3.daq.RAW.o3/daq.CTPRPCTGC.0072854.physics.HLT_Cosmics_MU3.LB0026.SFO-5._0001.data
- BNLT1D0 → PNFSID of "BNLT1D0" → data blob contains the two PNFSIDs.
 - Data blobs for these two PNFSIDs contain the list of many PNFSIDs.
 - Data for these PNFSIDs from these two list contain the name of files and/or directories and associated PNFSID, one of which corresponds to "data08_cos" sub directory
- data08_cos → Repeat the same process to get PNFSID of "RAW" sub directory.
- RAW → Again, repeat the process to get PNFSID of "data08_cos.....03" sub directory. However, these is a difference due to the size limit in data blob. Since "RAW" contains many subdirectories (~1k), the list of PNFSIDs can not contain all subdirectories. As a result, it uses the list of the list, resulting more queries.
- data08_cos.00072854.physics_HLT_Cosmics_MU3.daq.RAW.o3 → Again, repeat the same process to get PNFSID of the file, daq.CTPRPCTGC.0072854.physics.HLT_Cosmics_MU3.LB0026.SFO-5._0001.data But, also, get meta data for this file, which have different PNFSIDs. (yet more quries)

PNFS Summary

- "Is" of directory is very expensive in PNFS due to the requirment of (many) SQL queries + decodeing of many blobs
- During the high load time, it is CPU limited. Decoding of blob is expensive!
- Although PNFS database design is highly limited, there is one nice feature. That is that PNFS deamon catches the information for subsequent requests.

Chimera

- It does not use "blob" data → no decoding of "blob"
 - one SQL query will get all files in one directories vs many SQL queries to get all files in PNFSD
 - "Is" of directories in Chimera will be much faster than in PNFS
- Very similar in design to LFC (another psedo file system)
- Look up by the multiple clients should work faster due to the non-blob-decoding. In PNFS, blob-decoding acts like the table lock.
- It does not seem to catch the previous SQL lookup. As a result, it requires the similar number of real SQL queires to get the specific file information as PNFD.

Chimera Schema

iparent	iname	ipnfsid	
00000000000000000000000000000000000000	0000 000 000 0000 00003	9DCBE4B7CD144C386DF6 39DCBE4B7CD144C386DF6 00000000000000000000000000000000000	F6DC060C238AA 0000000000000 12425A628EF551 25A628EF5515 6DC060C238AA
000026B93E15908E4D188943A429A13B6E9D	u 0000E u 0000 0000 0000	26B93E15908E4D188943A EDCFFAA3B6504CEA8124: F4DDB2480AE74ACBB577 F4DDB2480AE74ACBB577 026B93E15908E4D188943A ipnfsid	25A628EF5515 3C210EE39B2C 3C210EE39B2C
iparent 000026B93E15908E4D188943A429A13B6E9D iri iparent	+		210EE39B2C
0000F4DDB2480AE74ACBB5773C210EE39B2C sub1 iparent	iname	ipnfsid 	

Comparison of PNFS and Chimera from Datatabase trace

- Test setup.
 - /A/B/C/File.i i=0..10000
- PNFS
 - ~15 SQLs
- Chimera
 - ~12 SQLs
- Single thread performance of "ls /A/B/C/File.i" shows Chimera being 27% improvement.